2,352 research outputs found

    Quasi-stationary states and the range of pair interactions

    Full text link
    "Quasi-stationary" states are approximately time-independent out of equilibrium states which have been observed in a variety of systems of particles interacting by long-range interactions. We investigate here the conditions of their occurrence for a generic pair interaction V(r \rightarrow \infty) \sim 1/r^a with a > 0, in d>1 dimensions. We generalize analytic calculations known for gravity in d=3 to determine the scaling parametric dependences of their relaxation rates due to two body collisions, and report extensive numerical simulations testing their validity. Our results lead to the conclusion that, for a < d-1, the existence of quasi-stationary states is ensured by the large distance behavior of the interaction alone, while for a > d-1 it is conditioned on the short distance properties of the interaction, requiring the presence of a sufficiently large soft-core in the interaction potential.Comment: 5 pages, 3 figures; final version to appear in Phys. Rev. Let

    Action for Rehabilitation from Neurological Injury (ARNI): A pragmatic study of functional training for stroke survivors

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund. Copyright @ 2013 Cherry Kilbride et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This study evaluated the effectiveness of a twelve-week community-based functional training on measures of impairment, activity and participation in a group of stroke survivors. Isometric strength of the knee musculature, Centre-Of-Pressure (COP) based measures of balance, Berg Balance Scale (BBS), 10 m walk test, and the Subjective Index of Physical and Social Out come (SIPSO), were recorded at baseline, post-intervention, and after twelve weeks (follow-up). Exercise instructors delivered training once a week in a group format at a community centre. Significant improvement was noted in the BBS (p < 0.002), and 10 m walk speed (p = 0.03) post intervention which remained unchanged at follow-up. Total SIPSO score improved significantly post-intervention (p = 0.044). No other significant differences and no adverse effects were observed. It is possible that functional training provided more opportunity for the improvement of dynamic aspects of balance control that could be captured by the BBS but not with the traditional measures of balance using COP data. Results also suggest positive effects on the level of participation, and lack of association between measures of impairment and activity. Community based functional training could be effective and used to extend access to rehabilitation services beyond the acute and sub-acute stages after stroke.London Borough of Hillingdo

    The structure of borders in a small world

    Get PDF
    Geographic borders are not only essential for the effective functioning of government, the distribution of administrative responsibilities and the allocation of public resources, they also influence the interregional flow of information, cross-border trade operations, the diffusion of innovation and technology, and the spatial spread of infectious diseases. However, as growing interactions and mobility across long distances, cultural, and political borders continue to amplify the small world effect and effectively decrease the relative importance of local interactions, it is difficult to assess the location and structure of effective borders that may play the most significant role in mobility-driven processes. The paradigm of spatially coherent communities may no longer be a plausible one, and it is unclear what structures emerge from the interplay of interactions and activities across spatial scales. Here we analyse a multi-scale proxy network for human mobility that incorporates travel across a few to a few thousand kilometres. We determine an effective system of geographically continuous borders implicitly encoded in multi-scale mobility patterns. We find that effective large scale boundaries define spatially coherent subdivisions and only partially coincide with administrative borders. We find that spatial coherence is partially lost if only long range traffic is taken into account and show that prevalent models for multi-scale mobility networks cannot account for the observed patterns. These results will allow for new types of quantitative, comparative analyses of multi-scale interaction networks in general and may provide insight into a multitude of spatiotemporal phenomena generated by human activity.Comment: 9 page

    The Modular Clock Algorithm for Blind Rendezvous

    Get PDF
    This thesis examines the problem in initializing communications whereby cognitive radios need to find common spectrum with other cognitive radios, a process known as frequency rendezvous. It examines the rendezvous problem as it exists in a dynamic spectrum access cognitive network. Specifically, it addresses the problem of rendezvous in an infrastructureless environment. A new algorithm, the modular clock algorithm, is developed and analyzed as a solution for the simple rendezvous environment model, coupled with a modified version for environment models with less information. The thesis includes a taxonomy of commonly used environment models, and analysis of previous efforts to solve the rendezvous problem. Mathematical models and solutions used in applied statistics are analyzed for use in cognitive networking. A symmetric rendezvous pursuit-evasion game is developed and analyzed. Analysis and simulation results show that the modular clock algorithm performs better than random under a simple rendezvous environment model, while a modified version of the modular clock algorithm performs better than random in more difficult environment models

    Impact of dark matter subhalos on extended HI disks of galaxies: Possible formation of HI fine structures and stars

    Full text link
    Recent observations have discovered star formation activities in the extreme outer regions of disk galaxies. However it remains unclear what physical mechanisms are responsible for triggering star formation in such low-density gaseous environments of galaxies. In order to understand the origin of these outer star-forming regions, we numerically investigate how the impact of dark matter subhalos orbiting a gas-rich disk galaxy embedded in a massive dark matter halo influences the dynamical evolution of outer HI gas disk of the galaxy. We find that if the masses of the subhalos (MsbM_{\rm sb}) in a galaxy with an extended HI gas disk are as large as 10−3×Mh10^{-3} \times M_{\rm h}, where MhM_{\rm h} is the total mass of the galaxy's dark halo, local fine structures can be formed in the extended HI disk. We also find that the gas densities of some apparently filamentary structures can exceed a threshold gas density for star formation and thus be likely to be converted into new stars in the outer part of the HI disk in some models with larger MsbM_{\rm sb}. These results thus imply that the impact of dark matter subhalos (``dark impact'') can be important for better understanding the origin of recent star formation discovered in the extreme outer regions of disk galaxies. We also suggest that characteristic morphologies of local gaseous structures formed by the dark impact can indirectly prove the existence of dark matter subhalos in galaxies. We discuss the origin of giant HI holes observed in some gas-rich galaxies (e.g., NGC 6822) in the context of the dark impact.Comment: 8 pages, 4 figures, accepted by ApJ

    Simulation of cosmic irradiation conditions in thick target arrangements

    Get PDF
    One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target
    • …
    corecore